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Abstract

Positron emission tomography (PET) plays key roles in drug discovery and development, as well 

as medical imaging. However, there is a dearth of efficient and simple radiolabeling methods for 

aromatic C–H bonds, which limits advancements in PET radiotracer development. Here, we 

disclose a mild method for the fluorine-18 (18F)–fluorination of aromatic C–H bonds by an [18F]F
− salt via organic photoredox catalysis under blue light illumination. This strategy was applied to 

the synthesis of a wide range of 18F-labeled arenes and heteroaromatics, including pharmaceutical 

compounds. These products can serve as diagnostic agents or provide key information about the in 

vivo fate of the labeled substrates, as showcased in preliminary tracer studies in mice.

Fluorine-18 (18F) is one of the most important radioisotopes in the radiopharmaceutical 

industry because it has a relatively long half-life (t1/2 = 110 min) and decays with high 

efficiency by positron emission (97%) (1). A primary application of this radioisotope is in 

the form of 2-[18F]fluorodeoxyglucose ([18F]FDG), which is used for oncological 
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diagnoses, neuroimaging, and studying glucose metabolism (2). Uptake of [18F]FDG and 

other 18F-labeled agents is monitored by positron emission tomography (PET) imaging, 

which quantifies spatial distributions and metabolic perturbations, as well as site-specific 

chemical reactivity and ensuing in vivo biological processes (3).

Many small-molecule pharmaceuticals and therapeutics contain aromatic or heteroaromatic 

systems within their framework, thus presenting a common organic subunit for the 

installation of radioisotopes to yield radiotracers with imaging utility. In particular, the direct 

conversion of arene C–H into C–18F bonds is ideal owing to the prevalence of aromatic C–H 

bonds and the increasing importance of C(sp2)–F bonds in small-molecule therapeutics and 

probes (4, 5). Direct 18F-fluorination of aromatics currently requires the use of electrophilic 

fluorine sources, the simplest of which is [18F]F2; however, this gaseous reagent is 

incompatible with many common organic functional groups and suffers from low molar 

activity (the measured radioactivity per mole of compound) as a result of its production 

methods (6–8). Most modern methods for C–H to C–F bond conversion require electrophilic 

fluorine in the form of relatively expensive but bench-stable reagents such as N-

fluorobenzenesulfonimide (NFSI) and 1-chloromethyl-4-fluoro-1,4-

diazoniabicyclo[2.2.2]octane-bis(tetra-fluoroborate) (Selectfluor). However, their utility for 
18F radio-labeling via electrophilic fluorination is diminished because [18F]NFSI and 

[18F]Selectfluor are prepared from [18F]F2 (9), which results in even lower molar activities 

of the 18F-labeled tracers. Therefore, a method for direct conversion of a C–H to a C–18F 

bond via a nucleophilic arene fluorination strategy is highly attractive because the synthesis 

of 18F-radiolabeled pharmaceutical compounds can be accomplished with high molar 

activity fluoride ([18F]F−). Furthermore, direct C–H to C–18F conversion should alleviate 

synthetic burdens associated with the synthesis of radiotracer precursors (10) and allow for 

the recovery of precious, unreacted starting material. However, the primary hurdle for this 

approach is the lack of reactivity for a majority of simple aromatics with [18F]F−.

Nucleophilic aromatic substitution of electron-deficient arenes has been the standard method 

for [18F]F− incorporation (1), but prefunctionalization of the aromatic subunit with electron-

withdrawing groups is required for this strategy (3). Thus, modern radiofluorination methods 

have sought to generalize the arene scope for this transformation. Current strategies include 
18F-deoxyfluorination of phenols via uronium (11) and N-arylsydnone (12) intermediates; 

displacement of sulfonium salts (13); fluorodemetalation of preformed palladium or nickel 

arene complexes from the requisite aryl halides or boronic acids (14, 15); and copper-

mediated cross-coupling of preformed or in situ–generated aryliodoniums (16, 17), aryl 

boronic acids (18), esters (19), and arylstannanes (20) (Fig. 1A). Despite the advances in 

radiofluorination, these approaches can be technically challenging for radiochemists. 

Moreover, the use of metal re-agents, especially in stoichiometric or super-stoichiometric 

amounts, can complicate the quality control process for translational studies because 

additional analysis on residual metal levels is required.

With these challenges in mind, we sought to develop an arene C–H fluorination method 

compatible with [18F]F− (Fig. 1B). The Nicewicz lab has developed a research program 

using organic single-electron photooxidants to catalytically generate arene radical cations as 

reactive intermediates for arene C–H functionalization reactions. Thus, we applied this 
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strategy for direct C–H to C–18F bond conversion. Considering the low molar amount of no-

carrier-added [18F]F−, radiation exposure, and the potentially high cost of [18F]F− 

production, we decided to first use 19F-fluoride for the development of a 

photoredoxcatalyzed method for arene C–H fluorination. Using diphenyl ether as the 

aromatic substrate, we were able to obtain 17% of fluorinated adducts in a 13:1 para:ortho 

ratio using an acridinium-based photooxidant (1), cesium fluoride (CsF), the phase-transfer 

reagent tetrabutylammonium bisulfate (TBA-HSO4) and 2,2,6,6-tetramethyl-1-piperidine 1-

oxyl (TEMPO) as a redox co-mediator under aerobic conditions for 24 hours (Fig. 2 and 

table S1). We attribute the low yields to the relative recalcitrance of fluoride, which is a 

Brønsted base and can form strong hydrogen bonds in aqueous environments (21). Despite 

lower yields for the aryl C–H fluorination with 19F–, C–H fluorination was feasible and thus 

we decided to extend our method to radiofluorination.

In this new system, [18F]F− is employed as the limiting reagent, and we envisioned that the 

relatively higher concentration of arene radical cation would efficiently capture [18F]F−. 

Transitioning from F− to [18F]F− necessitated a reexamination of fluoride sources and 

irradiation method while aiming to achieve reasonable 18F-labeling yields on 30 min to 1 

hour time scales, given the fleeting half-life of the fluorine radio-isotope. High molar 

activity aqueous [18F]F− is prepared via proton bombardment of [18O] water and subsequent 

elution of 18F-fluoride with tetrabutylammonium bicarbonate to yield [18F]TBAF, or 

potassium carbonate complexed with the aminopolyether cryptand Kryptofix 2.2.2 to form 

[18F]KF-K222 (1). In both of these systems, excess tetrabutylammonium bicarbonate and 

potassium carbonate are present. Although the initial radio-chemical yields (RCYs) were 

relatively low (0.57%), [18F]TBAF was the most effective 18F-fluorinating agent in the 

synthesis of [18F]2 [see section 5.5 of the supplementary materials and methods (SM 5.5)]. 

Initial RCYs using 455-nm light-emitting diodes were relatively low (0.57%), which 

prompted us to reevaluate the light flux for the transformation. Using top-down irradiation 

with a 3.5-W laser (450 nm) (22) for 30 min (cooled to 0°C to prevent solvent loss from 

laser-generated heat) under an aerobic atmosphere afforded a marked increase in the yields 

of the 18F-fluorinated adducts of diphenyl ether (25.8 and 2.0% for the para and ortho 

adducts, respectively). After extensive optimization (SM 5.5), we identified a system that 

afforded the para and ortho fluorinated adducts (37.1 and 2.0% yield, respectively) but 

observed a drop in the molar activity of [18F]-TBAF. We attributed this inconsistency to the 

exchange of [18F]F− with fluoride from the BF4
− counterion of the acridinium catalyst, 

which in turn lowers the net molar activity of [18F]-TBAF. To circumvent this problem, we 

synthesized an acridinium containing a perchlorate (ClO4
−) counterion and found that 18F-

labeled diphenyl ether (2) adducts could be isolated with a molar activity of 1.37 Ci/μmol 

(compared with 0.39 Ci/μmol with BF4
− counterion) and comparable RCYs of 38.2 and 

1.8% for the para and ortho products, respectively.

Having identified the optimal catalytic conditions for the transformation, we turned our 

attention to evaluating the scope of this method with a range of aromatic and heteroaromatic 

substrates. Biphenyl (3) and naphthalene (4) were fluorinated at the 4- and 1-positions, 

respectively, in good RCY. 2-Substituted methoxyarenes (5 to 11) were also efficiently 

fluorinated at the C–H site para to the methoxy group, following a similar trend to the 
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amination (23) and cyanation (24) methods from our laboratory. Halogenated and 

pseudohalogenated methoxyarenes 2-bromoanisole (5), 2-chloroanisole (6), and 2-OTf-

anisole (7) were all fluorinated at the 4-position in good RCY, thus demonstrating the 

compatibility of halogenated and pseudohalogenated arenes with our system, as these 

functional groups are typically susceptible to oxidative addition in transition metal–

catalyzed methods. A range of carbonyl-containing functional groups, such as esters (8), 

ketones (9), nitriles (10), aldehydes (11), and amides (12), were all compatible with this 

method, affording single regioisomers of the 18F adducts. Methoxy-substituted biphenyl 

systems (13 and 14) were also competent substrates for fluorination, affording the single 

regioisomers in moderate RCY. We did not observe significant ortho fluorination for 2-

substituted anisoles, which we attribute to a greater gain in positive charge density on the 

para position of the arene cation radical (25) and potential steric hindrance. Thus, we were 

curious to explore the amenability of our radiofluorination protocol to methoxyarenes 

bearing substitution at the para position. We found that these 4-substituted congeners (15 to 

19) were compatible fluorination partners, although the RCYs observed were significantly 

lower than their 2-substituted counterparts. Nevertheless, the isolated yields for these 4-

substituted methoxyarenes are acceptable for PET imaging applications. Preliminary 

computational studies (figs. S97 and S98) suggest that there is little correlation between the 

calculated electrophilicities of the cation radical for the 2- and 4-substituted arenes and the 

observed yields, thus suggesting a greater contribution of steric effects in determining site 

selectivity. When 3-methoxyacetophenone was subjected to the radiofluorination conditions, 

a 2:1 ratio of 18F-labeled adducts was obtained with a preference for fluorination para to the 

methoxy group (20). Computational studies suggest that the 6-position gains the most 

electrophilic character relative to the 2- and 4-positions (fig. S99) upon single electron 

oxidation; however, only the latter products are observed. Taken together, these results 

demonstrate a strong preference for the para functionalization of methoxyarenes except in 

cases where the para position is occupied, and they suggest that steric effects may play a role 

in dictating site selectivity for C–H fluorination.

Arenes containing guaiacol motifs are found in numerous plant and animal metabolites; 

thus, the application of our C–H radiofluorination strategy could enable the facile synthesis 

of 18F radio-tracers from renewable sources. We found that ethylguaiacol (21), vanillylamine 

(22), nonivamide (23), and zingerone (24) derivatives were all successfully fluorinated to 

provide single regioisomers of the 18F analogs. Furthermore, this reaction is not limited to 

methoxyarenes, as demonstrated by mesitylene undergoing fluorination (<9%) under aerobic 

conditions to give 25. This isolated RCY was improved to 50% by employing a modified 

anaerobic system (using TEMPO as a net oxidant in MeCN with N2 bubbling). Fluorinated 

heterocycles are privileged and highly desirable motifs in pharmaceutical and agro-chemical 

research, and substantial resources are directed toward measuring the pharmacokinetics of 

these compounds (26). Our radiofluorination protocol was applied to several heterocyclic 

classes: We found that 2,5-dimethoxypyridine (26), 2-chloro-6-methoxyquinoline (27), and 

N,N-dihexylquinazolinedione (28) were all successfully fluorinated in good to moderate 

RCY. Benzazoles common to many therapeutics, such as N-methylindazole (29), 

benzoxazole (30), and benzimidazole (31), all underwent fluorination at the most 

electrophilic positions of their respective cation radicals. Selective late-stage arene C–H 
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fluorination is an attractive synthetic strategy, as it circumvents the need for complicated 

labeling precursors and enables the straightforward conversion of bioactive molecules and 

drugs into PET agents for in vitro companion diagnosis or for pharmacodynamic and 

pharmacokinetic studies.

We chose to apply our 18F radiofluorination method to several nonsteroidal anti-

inflammatory drugs (NSAIDs), which are an important class of pharmaceuticals that 

alleviate pain and inflammation by inhibiting the activity of cyclooxygenase enzymes 

(COX-1 and COX-2). Although there have been recent advances in the radiolabeling of 

COX-1 and COX-2 inhibitors, many examples use 11C as the radionuclide, which has the 

disadvantage of a shorter half-life (t1/2 = 20.2 min) than 18F (27). Existing 18F-labeled COX 

inhibitors typically incorporate 18F in the radioprobe as part of a phenol-appended 

fluorinated alkyl chain (28). However, these functional groups are prone to metabolic 

degradation and thus may be less-effective radiotracers (27, 29). Fluorination of the aromatic 

ring is a strategy typically used to study drug metabolism, as fluorine is a hydrogen 

bioisostere and its substitution slows the metabolic degradation of drug molecules by cyto-

chrome P450 (29). Fluorinated aromatics can also act as metabolic tracers because 

hydroxylated fluoroarene metabolites undergo a 1,2-fluoride shift (NIH shift), thus allowing 

for the detection and quantification of metabolic byproducts (30, 31). Furthermore, the 

introduction of fluorine into the aromatic system can improve the potency and cell 

permeability of drug molecules through noncovalent interactions (5). The development of 

the NSAID celecoxib is an instructive example, in which the substitution of various aryl C–

H bonds for aryl C–F bonds was used to bias in vitro COX-2 selectivity (32). However, 

routes for the analogous synthesis of C(sp2)–18F bonds in COX inhibitors with aromatic 

moieties are underexplored because of difficulties with designing late-stage precursors for 
18F radiolabeling (33). Thus, we envisioned that our method would enable the introduction 

of 18F into known COX inhibitors. The NSAID derivatives fenoprofen methyl ester (32), 

flurbiprofen methyl ester (33), and O-methyl methyl salicy-late (8) were all fluorinated in 

good to moderate RCYs. Given the ubiquitous use of these commercial NSAIDs (34), the 

synthesis of their radio- tracer counterparts could provide researchers with a method for 

visualizing their immediate in vivo metabolic fates that is complementary to the longitudinal 

metabolism studies enabled by 3H- and 14C-labeling strategies (35).

The hypolipidemic agents clofibrate (34) and fenofibrate (35), as well as a derivative of the 

biological neurotransmitter precursor DL-DOPA (36), were selectively fluorinated in 

moderate RCY after 30 min. We found that the fluorination protocol was influenced by 

reaction times, as extending the runtime to 1 hour increased the RCY of the fluorinated 

DOPA derivative to 21.2%. This result is especially noteworthy because [18F]DOPA is an 

important radioprobe for the PET imaging of CNS disorders (36), but published routes to it 

typically require extensive and sensitive synthesis with 18F precursors (37) or the 

fluorination of prefunctionalized DOPA analogs (16, 19). This fluorinated DOPA derivative 

was then subjected to facile global deprotection to yield [18F]-DOPA (37) in 12.3% RCY. 

Other aromatic amino acids, such as the protected variants of O-Me-ortho-tyrosine and 4-

phenyl-phenylalanine, were also successfully radiofluorinated (38 and 40, respectively), and 

their deprotected forms (39 and 41, respectively) were accessed with relative ease.
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A major objective of our synthetic methodology was to develop clinically relevant PET 

tracers from readily available bioactive molecules without first requiring arene 

prefunctionalization. To test this concept, we examined the feasibility of converting the 

NSAID fenoprofen into a PET agent by direct C–H fluorination. Fenoprofen has notable 

anti-inflammatory activity (38), but there have been minimal studies with its fluorinated 

analogs. Given the widely exploited hydrogen bioisosterism of fluorine in medicinal 

chemistry (5), we were interested in examining the viability of the radiofluorinated analog 

for PET studies. [18F]-Fenoprofen (42) was readily accessed from 32, which was then used 

to detect inflammation induced by 12-o-tetradecanoylphorbol-13-acetate (TPA) in mouse 

ears (Fig. 3A and fig. S94) (see supplementary materials and methods for more details) (39). 

Preliminary ex vivo PET studies (Fig. 3A) show significantly higher up-take of [18F]-

fenoprofen in the ear inflammation model relative to the control 30 min after intravenous 

introduction of the radioprobe. These data suggest that 42 is a potential PET agent that 

demonstrates preferential accumulation in inflamed tissue. Additional biological evaluations 

for 42 are needed but are currently beyond the scope of this Report.

Another application of our C–H radiofluorination method is rapid radioligand screening in 

drug discovery and development. We chose to highlight synthetic aromatic amino acids as a 

class of bioactive metabolites owing to their applicability for oncological PET imaging (40–

42). We are especially interested in the tyrosine scaffold, as fluorination on the aromatic ring 

is an important functionalization mode for developing PET probes. We selected O-Me-

ortho-tyrosine and 4-phenyl-phenylalanine as the working examples, and our method 

provides facile access to radio-fluorinated 39 and 41. In vivo PET studies of mice containing 

MCF7 (breast cancer) and U87MG (glioblastoma) tumor xenografts demonstrate prominent 

uptake of 39 with minimal accumulation in other organs except the pancreas and bladder 

(Fig. 3B and fig. S95) (see supplementary materials and methods for more details). 

Conversely, 41 displayed low uptake in similar tumor models with significantly higher 

retention in the mouse circulatory system. On the basis of these preliminary studies, 39 
shows promise as a selective amino acid radioprobe for tumor detection, and further studies 

will be needed to examine its biological activity and pharmacology. These results further 

demonstrate the potential of our radiofluorination method for the discovery of new PET 

agents that circumvents the need for prefunctionalized (hetero)arenes.

18F radiolabeling is an important tool for noninvasive studies of biological systems, and we 

anticipate that the applicability of our radio-fluorination method to commercial 

pharmaceuticals and metabolites will enable direct access to new classes of translationally 

relevant 18F radio-tracers, either as diagnostic agents or as target probes for elucidating the 

in vivo fate of metabolites or pharmaceuticals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. An organic photoredox approach to 18F labeling of arenes for PET studies.
(A) Prior work relies on the isolation of aryl organometallic species. (B) This study obviates 

the need for metalation by using organic photoredox catalysis.
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Fig. 2. Reaction scope of 18F-fluorination of aromatics.
All RCYs are decay-corrected and averaged over three experiments unless otherwise noted. 

Asterisk indicates yield averaged over five experiments. Single-dagger symbol indicates that 

24.8% RCY of the 2-fluoro dechlorinated product is formed. Double-dagger symbol 

indicates that the RCYs listed are based on the product deprotection yields (see SM 5.6). Bu, 

butyl; MeCN, acetonitrile; hex, hexyl; iPr, isopropyl; t-Bu, tert-butyl; Me, methyl; Ph, 

phenyl; OTf, trifluoromethanesulfonate; Et, ethyl; Boc, butoxycarbonyl.
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Fig. 3. Examples of PET tracers synthesized via arene C–H radiofluorination.
(A) Maximum intensity projection (MIP) PET images of [18F]-fenoprofen (42) demonstrate 

higher uptake in TPA-treated mouse ear (A-1) compared with control (A-2) mouse ear. (B) 

PET/CT images demonstrate preferential tumor (MCF-7) accumulation of 39, compared 

with longer blood circulation and higher nonspecific binding of 41 at 1 hour after injection. 

(C) Structures of the tracers used in the preceding panels are shown.
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